Isomorphism, Equivalence, and Adjunction

Isomorphism

As mathematicians are wont to do, whenever we have a collection of algebraic “objects,” we want to know how to “relate” them.  In the case of categories, we saw earlier that maps called functors are what we want to examine.

The next step after defining these structure preserving maps is to wonder what it means for two objects to be “essentially the same.”  In Set, bijections do this.  In Grp, group isomorphisms do this.  In Top, homeomorphisms do this.  Etc, etc.  If we were to try an analogous procedure for categories, we would say two categories C and D are isomorphic if there exist two functors: F: \textbf{C} \to \textbf{D} and G: \textbf{D} \to \textbf{C} such that F \circ G = id_{\textbf{D}} and G \circ F = id_{\textbf{C}}.  Saying that two categories are isomorphic means that they are, for all intents and purposes, the same (maybe they differ in notation or something).

Equivalence

As it happens, this tends to be too restrictive a condition (i.e. categories that behave more or less the same tend to not actually be isomorphic).  What if, instead of requiring that FG = id_\textbf{D} and GF = id_\textbf{C}, we require that these functors are naturally isomorphic to the appropriate identities?  We would then say that C and  are “equivalent” categories.

The first time I ever saw this phenomenon was in algebraic geometry, where one sees that the category of finitely generated reduced k-algebras is equivalent to the category of (affine) algebraic varieties over k (here k is a field).  Later on we saw that the category of commutative rings with unity is equivalent to the category of affine schemes equipped with their structure sheaves.  Another cool example is that the category of quasi-coherent sheaves over an affine scheme \text{Spec}(R) is equivalent to the category of R-modules.

For a simpler example, take any poset (X,\leq) and consider it as a category.  Then reversing the direction of the arrows gives an equivalent category (X, \geq).  Obviously, this works for any category and its opposite category.  I just like the poset case because one can visualize it quite easily.

Adjunction

Simply put: adjunctions are ubiquitous.  It took me a long time to see that, and I’m still wading through the ramifications.  I gave a (brief) blurb about them in the last post, but let’s up the scrutiny.  We say F: \textbf{C} \to \textbf{D} and G: \textbf{D} \to \textbf{C} are an adjoint pair (written F \dashv G) if there is a natural bijection between maps f: A \to GB in C and \overline{f}: FA \to B in D.

Note that, in D, we have the map id_{FA} : FA \to FA.  The adjunction gives a unique map \eta_A: A \to GFA, and likewise we have a unique map id_{GB} : GB \to GB yielding \epsilon_B : FGB \to B.  These maps are called the “unit” and “counit” of the adjuction at A or B.  In fact, the adjunction yields a pair of natural transformations \eta: id_\textbf{C} \to GF and \epsilon: FG \to id_\textbf{D}.

That’s pretty neat.  It explicitly shows the “descending chain of equivalence” from isomorphism of categories, equivalence of categories, and adjunction of functors between categories.  The naturality of the unit and counit transformations from an adjunction F \dashv G actually implies the “bijection” criterion, so we can really just take the unit-counit thing as a starting point.

I’ll do more on this later.  I have class to go to 🙂

Author: brianhepler

I'm a second-year math postdoc at the University of Wisconsin-Madison, and I think math is pretty neat. Especially the more abstract stuff. It's really hard to communicate that love with the general population, but I'm going to do my best.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s